155 research outputs found

    A computational model integrating brain electrophysiology and metabolism highlights the key role of extracellular potassium and oxygen

    Get PDF
    The human brain is a small organ which uses a disproportional amount of the total metabolic energy pro- duction in the body. While it is well understood that the most significant energy sink is the maintenance of the neuronal membrane potential during the brain signaling activity, the role of astrocytes in the energy balance continues to be the topic of a lot of research. A key function of astrocytes, besides clearing glutamate from the synaptic clefts, is the potassium clearing after neuronal activation. Extracellular potassium plays a significant role in triggering neuronal firing, and elevated concentration of potassium may lead to abnormal firing pattern, e.g., seizures, thus emphasizing the importance of the glial K+ buffering role. The predictive mathematical model proposed in this paper elucidates the role of glial potassium clearing in brain energy metabolism, integrating a detailed model of the ion dynamics which regulates neuronal firing with a three compartment metabolic model. Because of the very different characteristic time scales of electrophysiology and metabolism, care must be taken when coupling the two models to ensure that the predictions, e.g., neuronal firing frequencies and the oxygen- glucose index (OGI) of the brain during activation and rest, are in agreement with empirical observations. The temporal multi-scale nature of the problem requires the design of new computational tools to ensure a stable and accurate numerical treatment of the problem. The model predictions for different protocols, including combinations of elevated activation and ischemic episodes, are in good agreement with experimental observations reported in the literature.This work was supported by the Bizkaia Talent and European Commission through CO- FUND under the grant CIPAS: Computational Inverse Problems Across Scales (AYD-000-278, 2015), by the Basque Government through the BERC 2014-2017 program, and by the Spanish Ministry of Economics and Competitive- ness MINECO through the BCAM Severo Ochoa excellence accreditation SEV-2013-0323 and the Spanish ”Plan Estatal de Investigacio ́n, Desarrollo e Innovacio ́n Orientada a los Retos de la Sociedad” under Grant BELEMET - Brain ELEctro-METabolic modeling and numerical approximation (MTM2015-69992-R). The work of Daniela Cal- vetti was partly supported by Grant Number 246665 from the Simons Foundation, and the work of Erkki Somersalo was partly supported by NSF Grant DMS 1016183. Daniela Calvetti and Erkki Somersalo were partly supported by NIH, grant 1U01GM111251-01

    The IAS-MEEG Package: A Flexible Inverse Source Reconstruction Platform for Reconstruction and Visualization of Brain Activity from M/EEG Data

    Get PDF
    We present a standalone Matlab software platform complete with visualization for the reconstruction of the neural activity in the brain from MEG or EEG data. The underlying inversion combines hierarchical Bayesian models and Krylov subspace iterative least squares solvers. The Bayesian framework of the underlying inversion algorithm allows to account for anatomical information and possible a priori belief about the focality of the reconstruction. The computational efficiency makes the software suitable for the reconstruction of lengthy time series on standard computing equipment. The algorithm requires minimal user provided input parameters, although the user can express the desired focality and accuracy of the solution. The code has been designed so as to favor the parallelization performed automatically by Matlab, according to the resources of the host computer. We demonstrate the flexibility of the platform by reconstructing activity patterns with supports of different sizes from MEG and EEG data. Moreover, we show that the software reconstructs well activity patches located either in the subcortical brain structures or on the cortex. The inverse solver and visualization modules can be used either individually or in combination. We also provide a version of the inverse solver that can be used within Brainstorm toolbox. All the software is available online by Github, including the Brainstorm plugin, with accompanying documentation and test data

    Sixfold Post-Fracture Mortality in 16-To 30-Year-Old Patients-Suicides, Homicides, and Intoxications Among Leading Causes of Death

    Get PDF
    Background and Aims: The death of any young individual is associated with the loss of many potentially fulfilling years of life. It has been suggested that the relative mortality of fracture patients may be higher in younger age groups than in older cohorts. We determined the mortality and causes of death in a cohort of 16- to 30-year-old patients that had been hospitalized for fractures. Material and Methods: We collected data using criteria based on the diagnosis code (International Statistical Classification of Diseases and Related Health Problems, 10th Revision), surgical procedure code (Nordic Medico-Statistical Committee), and seven additional characteristics of patients admitted to the trauma ward at the Central Finland Hospital between 2002 and 2008. Patients were then followed to ascertain their mortality status until the end of 2012. Standardized mortality ratios were calculated and causes of death were determined by combining our registry data with data provided by Statistics Finland. Results: During the study, 199 women and 525 men aged 16-30 years had sustained fractures. None of these patients died during the primary hospital stay. At the end of follow-up (mean duration 7.4 years), 6 women and 23 men had died. The standardized mortality ratio for all patients was 6.2 (95% Confidence Interval: 4.3-8.9). Suicides and intoxications comprised over half, and motor vehicle accidents and homicides comprised nearly a third of the post-fracture deaths. Conclusion: We found a concerning increase in mortality among young adults that had been hospitalized due to a fracture compared to the general population that had been standardized by age, sex, and calendar-period. Leading causes of death were suicides and intoxications or motor vehicle accidents and homicides, which may be indicative of depressive disorders or impulse control disorders, respectively. Identification of the underlying psychosocial problems may provide an opportunity for preventive interventions.Peer reviewe

    Brain energetics plays a key role in the coordination of electrophysiology, metabolism and hemodynamics: evidence from an integrated computational model

    Get PDF
    The energetic needs of brain cells at rest and during elevated neuronal activation has been the topic of many investigations where mathematical models have played a significant role providing a context for the interpretation of experimental findings. A recently proposed mathematical model, comprising a double feedback between cellular metabolism and electrophysiology, sheds light on the interconnections between the electrophysiological details associated with changes in the frequency of neuronal firing and the corresponding metabolic activity. We propose a new extended mathematical model comprising a three-way feedback connecting metabolism, electrophysiology and hemodynamics. Upon specifying the time intervals of higher neuronal activation, the model generates a potassium based signal leading to the concomitant increase in cerebral blood flow with associated vasodilation and metabolic changes needed to sustain the increased energy demand. The predictions of the model are in good qualitative and quantitative agreement with experimental findings reported in the literature, even predicting a slow after-hyperpolarization of a duration of approximately 16 s matching experimental observations.The work of Daniela Calvetti was partly support by NSF grants DMS-1522334 and NIH grant 1U01 GM111251-01. The work of Erkki Somersalo was partly support by NSF grants DMS 1714617 and NIH grant 1U01GM111251-01

    Stochastic modelling of muscle recruitment during activity

    Get PDF
    Muscle forces can be selected from a space of muscle recruitment strategies that produce stable motion and variable muscle and joint forces. However, current optimization methods provide only a single muscle recruitment strategy. We modelled the spectrum of muscle recruitment strategies while walking. The equilibrium equations at the joints, muscle constraints, static optimization solutions and 15-channel electromyography (EMG) recordings for seven walking cycles were taken from earlier studies. The spectrum of muscle forces was calculated using Bayesian statistics and Markov chain Monte Carlo (MCMC) methods, whereas EMG-driven muscle forces were calculated using EMG-driven modelling. We calculated the differences between the spectrum and EMG-driven muscle force for 1–15 input EMGs, and we identified the muscle strategy that best matched the recorded EMG pattern. The best-fit strategy, static optimization solution and EMG-driven force data were compared using correlation analysis. Possible and plausible muscle forces were defined as within physiological boundaries and within EMG boundaries. Possible muscle and joint forces were calculated by constraining the muscle forces between zero and the peak muscle force. Plausible muscle forces were constrained within six selected EMG boundaries. The spectrum to EMG-driven force difference increased from 40 to 108 N for 1–15 EMG inputs. The best-fit muscle strategy better described the EMG-driven pattern (R2 = 0.94; RMSE = 19 N) than the static optimization solution (R2 = 0.38; RMSE = 61 N). Possible forces for 27 of 34 muscles varied between zero and the peak muscle force, inducing a peak hip force of 11.3 body-weights. Plausible muscle forces closely matched the selected EMG patterns; no effect of the EMG constraint was observed on the remaining muscle force ranges. The model can be used to study alternative muscle recruitment strategies in both physiological and pathophysiological neuromotor conditions

    Linear sampling method for identifying cavities in a heat conductor

    Full text link
    We consider an inverse problem of identifying the unknown cavities in a heat conductor. Using the Neumann-to-Dirichlet map as an input data, we develop a linear sampling type method for the heat equation. A new feature is that there is a freedom to choose the time variable, which suggests that we have more data than the linear sampling methods for the inverse boundary value problem associated with EIT and inverse scattering problem with near field data

    Computing Volume Bounds of Inclusions by EIT Measurements

    Full text link
    The size estimates approach for Electrical Impedance Tomography (EIT) allows for estimating the size (area or volume) of an unknown inclusion in an electrical conductor by means of one pair of boundary measurements of voltage and current. In this paper we show by numerical simulations how to obtain such bounds for practical application of the method. The computations are carried out both in a 2D and a 3D setting.Comment: 20 pages with figure

    Regularized Linear Inversion with Randomized Singular Value Decomposition

    Get PDF
    In this work, we develop efficient solvers for linear inverse problems based on randomized singular value decomposition (RSVD). This is achieved by combining RSVD with classical regularization methods, e.g., truncated singular value decomposition, Tikhonov regularization, and general Tikhonov regularization with a smoothness penalty. One distinct feature of the proposed approach is that it explicitly preserves the structure of the regularized solution in the sense that it always lies in the range of a certain adjoint operator. We provide error estimates between the approximation and the exact solution under canonical source condition, and interpret the approach in the lens of convex duality. Extensive numerical experiments are provided to illustrate the efficiency and accuracy of the approach.Comment: 20 pages, 4 figure

    RF thermal and new cold part design studies on TTF-III input coupler for Project-X

    Full text link
    RF power coupler is one of the key components in superconducting (SC) linac. It provides RF power to the SC cavity and interconnects different temperature layers (1.8K, 4.2K, 70K and 300K). TTF-III coupler is one of the most promising candidates for the High Energy (HE) linac of Project X, but it cannot meet the average power requirements because of the relatively high temperature rise on the warm inner conductor, some design modifications will be required. In this paper, we describe our simulation studies on the copper coating thickness on the warm inner conductor with RRR value of 10 and 100. Our purpose is to rebalance the dynamic and static loads, and finally lower the temperature rise along the warm inner conductor. In addition, to get stronger coupling, better power handling and less multipacting probability, one new cold part design was proposed using 60mm coaxial line; the corresponding multipacting simulation studies have also been investigated.Comment: 5 pages, 12 figures. Submitted to Chinese Physics C (Formerly High Energy Physics and Nuclear Physics
    • 

    corecore